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In this paper we use iterative methods to generate series solutions of the 
gravitational field equations in a cosmological model with heat flow. 

The Einstein field equations, which relate matter to geometry (Misner 
et al., 1973; Stephani, 1982), are expressed in terms of the space-time metric 
gab(X~), its partial derivatives up to second order, and the product of these 
derivatives. This makes this coupled system of partial differential equations 
(pde) highly nonlinear and it becomes a difficult problem to seek its exact 
solutions. However, one can deal with this problem by requiring that the 
space-time metric possesses some isometries (the isometries are representative 
of Killing vectors and k is called a Killing vector if the Lie derivative of the 
metric tensor remains zero along that k). The number of Killing vectors 
possessed by different space-times corresponds to physical situations repre- 
senting axial, spherical, and Minkowski symmetries, etc. (Bokhari, 1992a,b; 
Bergman, 1975, 1981; Glass, 1979). The greater is the number of Killing 
vectors, the greater is the symmetry and much easier is the task to obtain 
solutions of the gravitational field equations. A complete classification of 
these solutions according to their isometries is available (Petrov, 1969; Kramer 
et al., 1980; Bokhari and Qadir, 1987, 1988, 1990; Bokhari et al., 1993). 

While isometries give rise to solutions to the gravitational field equations, 
they impose certain important physical restrictions on the stress-energy tensor, 
e.g., if one chooses the Einstein field equations to define the energy-momen- 
tum tensor, then all metrics, no matter how arbitrary they are, would become 
solutions of these equations yielding arbitrary energy-momentum tensor 
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fields, which may correspond to physically uninteresting models. Since not 
all models can be allowed, there arises a need to constrain these solutions 
by imposing constraints on the energy-momentum tensor fields, as a conse- 
quence of which one requires that the space-times possess isometries. 

In this paper we address the problem of seeking the solutions of a general 
Robertson-Walker cosmological model presented earlier (Bokhari, 1992a,b). 
The metric of this model does not possess a time-translational isometry, but 
admits of spatial Killing vectors only. Apart from deriving a pressure isotropy 
condition and an expression for heat flow for completeness, we present a 
derivation of series solutions of the gravitational field equations in this model. 
The space-time metric of the cosmological model considered is 

ds  2 = A2(t ,  r) d t  2 - B2(t ,  r)[(1 - k 2 / R 2 ) - t d r  2 + r 2 d~-~ 2] (1) 

where k corresponds to the three Friedmann cosmological models for A = 
1 in the above equation and 

d~2 = dO 2 + sin2~ dqb 2 

The isotropic energy-momentum tensor field associated with the above met- 
ric is 

Tab = (p + p ) u ~ u  b _ pg~b + 2q(au b) (2) 

where p, p, and q~, respectively, represent mass-energy density, isotropic 
pressure, and the radial component of the heat flow vector. The u ~ represents 
the unit 4-velocity vector of the fluid defined by 

u a = A-18~ (3) 

Writing the Einstein field equations (in the units in which c = 1 = h = G) 
in the form in which Rob is used to derive the matter content of  the given 
space-time, 

gab = K(Tab - -  �89 T) (4) 

= 0 and b = 1 yields the radial component of heat and solving for a 
flow vector, 

2(1 - ke/R 2) ~2 g~ 

q ~ -  K 
(5) 

where K = 8"rr, T is the trace of the energy momentum field, and the dot 
and prime, respectively, represent differentiation with respect to temporal 
and radial coordinates. Notice that the Einstein field equations [see equation 
(4)] may give rise to any arbitrary energy-momentum tensor, which may not 
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correspond to a physically plausible solution, Thus we require that the energy- 
momentum tensor be isotropic, i.e., 

R~ = R 2 = R~ (6) 

Using the transformation x = r 2, we find that the isotropy condition gives 
rise to an interesting second-order pde in derivatives of x only, 

k 
(FA" + 2 F ' A  ' - AF")(1 - kx)  - ~ (A ' F  - F ' A )  = 0 (7) 

where we have used B = (I/F) in equation (7) and the prime now represents 
derivative with respect to the x coordinate. 

To be able to generate series solutions of  equation (7), we initially 
suppose that A = A1 = 1, and F = F1 are solutions of that equation and that F 
is an arbitrary function of time and radial coordinate. Under these assumptions 
equation (7) yields a second-order pde in F only given by 

F~'(1 - kx) + k /2  F[' = 0 (8) 

The above equation can be easily solved to yield 

F1 = a(t)(1 - kx) 1/2 + b(O (9) 

where b(t) is an integration function and a(t), which is given by - 2 c ( t ) / k ,  

equals a function of integration, c(t), times - 2 / k  with k being nonzero. 
Now rewriting equation (9) in the form F1 = a s  + b, where a = 

(1 - kx) 1/2, and using it in equation (7) yields 

A2'__ + 2 a a '  k - 0 (10) 
A2 ac~ + b 2(1 - kx) 

The above equation is a second-order pde in A2 and its derivatives, which 
can also be easily solved to obtain 

d o ~ + e  
A2 - - -  (11) 

aot + b 

where d = d(t) and e = e(t) are again functions of integration depending 
only on the time coordinate. 

Up to now we have found, using iterative methods, assuming A = 1 
initially, F~ and A2. The next step is to find F2 given A2. For this the isotropy 
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condition gives rise to a pde 

2act 'V' 2(bd - ae) kV' 
V" + ct 'V . . . .  0 (12) 

aoL + b (act + b)(dct + e) 2ct 2 

where we have substituted V = Fz/(act + b). Setting V' -- V1 in equation 
(12), we can write the same equation in the convenient form 

V{ -2ac t '  2 ( b d -  ae) k 
- - -  + + - -  ( 1 3 )  

V1 act + b (act + b)(dct + e) 2ct 2 

After some tedious calculations the above equation can be easily solved for 
V1. Rearranging terms and transforming back to F2, for the solution of equation 
(13), we obtain 

2 [ ( d c t + e ~  2 d ( d c t + e ~  d21 
F2 : Fak + a \act + b} + -~ (14) 

Having obtained solutions in terms of A1, A2, F1, and F2, we can finally write 
the general solution of equation (7) as 

F(x, t ) =  g(t)(act + b ) +  2h(/)3ak [(dot + e~ z d (dct + e~ d 2] + - + 
a \ac t  + b /  

This procedure can be continued and the next solutions can be easily gener- 
ated. In the special case in which k = 0, these solutions reduce to those of 
Deng (1989). 

Note that the model considered here differs from the one considered by 
Deng (1989) by the term (1 - kr2/R2) -1 in the one-one  component of the 
metric. This term, however, matters only when k is considered in the context 
of a closed Friedmann model, where the radial component of heat flow can 
be considered meaningful at least at the very early stages of the closed 
Friedmann era or it could be of interest when the closed Friedmann model 
converges to the big crunch singularity (at least at the classical level). In the 
open case the radial component of heat flow is of  no interest whatsoever, hence 
the above analysis is restricted only to the closed Robertson-type cosmologies. 
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